342 lines
9.1 KiB
C++
342 lines
9.1 KiB
C++
/* Copyright(C) 2007-2017 VoIPobjects (voipobjects.com)
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "HL_Sync.h"
|
|
#include <assert.h>
|
|
#include <atomic>
|
|
#include <memory.h>
|
|
#include <iostream>
|
|
|
|
#ifdef TARGET_OSX
|
|
# include <libkern/OSAtomic.h>
|
|
#endif
|
|
|
|
#ifdef TARGET_WIN
|
|
# include <Windows.h>
|
|
#endif
|
|
|
|
void SyncHelper::delay(unsigned int microseconds)
|
|
{
|
|
#ifdef TARGET_WIN
|
|
::Sleep(microseconds/1000);
|
|
#endif
|
|
#if defined(TARGET_OSX) || defined(TARGET_LINUX)
|
|
timespec requested, remaining;
|
|
requested.tv_sec = microseconds / 1000000;
|
|
requested.tv_nsec = (microseconds % 1000000) * 1000;
|
|
remaining.tv_nsec = 0;
|
|
remaining.tv_sec = 0;
|
|
nanosleep(&requested, &remaining);
|
|
#endif
|
|
}
|
|
|
|
long SyncHelper::increment(long *value)
|
|
{
|
|
assert(value);
|
|
#ifdef TARGET_WIN
|
|
return ::InterlockedIncrement((LONG*)value);
|
|
#elif TARGET_OSX
|
|
return OSAtomicIncrement32((int32_t*)value);
|
|
#elif TARGET_LINUX
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
// ------------------- ThreadHelper -------------------
|
|
void ThreadHelper::setName(const std::string &name)
|
|
{
|
|
#if defined(TARGET_LINUX)
|
|
int retcode = pthread_setname_np(pthread_self(), name.c_str());
|
|
if (retcode != 0)
|
|
{
|
|
std::cerr << "Failed to set Linux thread name" << std::endl;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
uint64_t ThreadHelper::getCurrentId()
|
|
{
|
|
#if defined(TARGET_WIN)
|
|
return static_cast<uint64_t>(GetCurrentThreadId());
|
|
#endif
|
|
|
|
#if defined(TARGET_LINUX)||defined(TARGET_OSX)
|
|
// RPi builds want this!
|
|
return (uint64_t)(pthread_self());
|
|
#endif
|
|
}
|
|
// ------------------- TimeHelper ---------------
|
|
using namespace std::chrono;
|
|
|
|
static uint64_t TimestampStartPoint = duration_cast<milliseconds>(steady_clock::now().time_since_epoch()).count();
|
|
static time_t TimestampBase = time(nullptr);
|
|
|
|
uint64_t TimeHelper::getTimestamp()
|
|
{
|
|
time_point<steady_clock> t = steady_clock::now();
|
|
|
|
uint64_t ms = duration_cast< milliseconds >(t.time_since_epoch()).count();
|
|
|
|
return ms - TimestampStartPoint + TimestampBase * 1000;
|
|
}
|
|
|
|
uint64_t TimeHelper::getUptime()
|
|
{
|
|
time_point<steady_clock> t = steady_clock::now();
|
|
|
|
uint64_t ms = duration_cast< milliseconds >(t.time_since_epoch()).count();
|
|
|
|
return ms - TimestampStartPoint;
|
|
}
|
|
|
|
uint32_t TimeHelper::getDelta(uint32_t later, uint32_t earlier)
|
|
{
|
|
if (later > earlier)
|
|
return later - earlier;
|
|
|
|
if (later < earlier && later < 0x7FFFFFFF && earlier >= 0x7FFFFFFF)
|
|
return 0xFFFFFFFF - earlier + later;
|
|
|
|
return 0;
|
|
}
|
|
|
|
TimeHelper::ExecutionTime::ExecutionTime()
|
|
{
|
|
mStart = TimeHelper::getTimestamp();
|
|
}
|
|
|
|
uint64_t TimeHelper::ExecutionTime::getSpentTime() const
|
|
{
|
|
return TimeHelper::getTimestamp() - mStart;
|
|
}
|
|
|
|
// --------------- BufferQueue -----------------
|
|
BufferQueue::BufferQueue()
|
|
{
|
|
|
|
}
|
|
|
|
BufferQueue::~BufferQueue()
|
|
{
|
|
|
|
}
|
|
|
|
void BufferQueue::push(const void* data, int bytes)
|
|
{
|
|
std::unique_lock<std::mutex> l(mMutex);
|
|
|
|
PBlock b = std::make_shared<Block>();
|
|
b->resize(bytes);
|
|
memcpy(b->data(), data, bytes);
|
|
mBlockList.push_back(b);
|
|
mSignal.notify_one();
|
|
}
|
|
|
|
BufferQueue::PBlock BufferQueue::pull(int milliseconds)
|
|
{
|
|
std::unique_lock<std::mutex> l(mMutex);
|
|
std::cv_status status = mBlockList.empty() ? std::cv_status::timeout : std::cv_status::no_timeout;
|
|
|
|
if (mBlockList.empty())
|
|
status = mSignal.wait_for(l, std::chrono::milliseconds(milliseconds));
|
|
|
|
PBlock r;
|
|
if (status == std::cv_status::no_timeout && !mBlockList.empty())
|
|
{
|
|
r = mBlockList.front();
|
|
mBlockList.pop_front();
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
// ----------------- Semaphore ---------------------
|
|
Semaphore::Semaphore(unsigned int count)
|
|
: m_count(count)
|
|
{}
|
|
|
|
void Semaphore::notify()
|
|
{
|
|
std::unique_lock<std::mutex> lock(m_mtx);
|
|
m_count++;
|
|
m_cv.notify_one();
|
|
}
|
|
|
|
void Semaphore::wait()
|
|
{
|
|
std::unique_lock<std::mutex> lock(m_mtx);
|
|
m_cv.wait(lock, [this]() { return m_count > 0; });
|
|
m_count--;
|
|
}
|
|
|
|
bool Semaphore::waitFor(int milliseconds) {
|
|
std::unique_lock<std::mutex> lock(m_mtx);
|
|
|
|
if (!m_cv.wait_for(lock, std::chrono::milliseconds(milliseconds), [this]() { return m_count > 0; }))
|
|
return false;
|
|
|
|
m_count--;
|
|
return true;
|
|
}
|
|
|
|
// ------------------- TimerQueue -------------------
|
|
TimerQueue::TimerQueue()
|
|
{
|
|
m_th = std::thread([this] { run(); });
|
|
}
|
|
|
|
TimerQueue::~TimerQueue()
|
|
{
|
|
cancelAll();
|
|
// Abusing the timer queue to trigger the shutdown.
|
|
add(std::chrono::milliseconds(0), [this](bool) { m_finish = true; });
|
|
m_th.join();
|
|
}
|
|
|
|
//! Adds a new timer
|
|
// \return
|
|
// Returns the ID of the new timer. You can use this ID to cancel the
|
|
// timer
|
|
uint64_t TimerQueue::add(std::chrono::milliseconds milliseconds, std::function<void(bool)> handler)
|
|
{
|
|
WorkItem item;
|
|
item.end = Clock::now() + milliseconds;
|
|
item.handler = std::move(handler);
|
|
|
|
std::unique_lock<std::mutex> lk(m_mtx);
|
|
uint64_t id = ++m_idcounter;
|
|
item.id = id;
|
|
m_items.push(std::move(item));
|
|
lk.unlock();
|
|
|
|
// Something changed, so wake up timer thread
|
|
m_checkWork.notify();
|
|
return id;
|
|
}
|
|
|
|
//! Cancels the specified timer
|
|
// \return
|
|
// 1 if the timer was cancelled.
|
|
// 0 if you were too late to cancel (or the timer ID was never valid to
|
|
// start with)
|
|
size_t TimerQueue::cancel(uint64_t id) {
|
|
// Instead of removing the item from the container (thus breaking the
|
|
// heap integrity), we set the item as having no handler, and put
|
|
// that handler on a new item at the top for immediate execution
|
|
// The timer thread will then ignore the original item, since it has no
|
|
// handler.
|
|
std::unique_lock<std::mutex> lk(m_mtx);
|
|
for (auto&& item : m_items.getContainer()) {
|
|
if (item.id == id && item.handler) {
|
|
WorkItem newItem;
|
|
// Zero time, so it stays at the top for immediate execution
|
|
newItem.end = Clock::time_point();
|
|
newItem.id = 0; // Means it is a canceled item
|
|
// Move the handler from item to newitem.
|
|
// Also, we need to manually set the handler to nullptr, since
|
|
// the standard does not guarantee moving an std::function will
|
|
// empty it. Some STL implementation will empty it, others will
|
|
// not.
|
|
newItem.handler = std::move(item.handler);
|
|
item.handler = nullptr;
|
|
m_items.push(std::move(newItem));
|
|
// std::cout << "Cancelled timer. " << std::endl;
|
|
lk.unlock();
|
|
// Something changed, so wake up timer thread
|
|
m_checkWork.notify();
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
//! Cancels all timers
|
|
// \return
|
|
// The number of timers cancelled
|
|
size_t TimerQueue::cancelAll() {
|
|
// Setting all "end" to 0 (for immediate execution) is ok,
|
|
// since it maintains the heap integrity
|
|
std::unique_lock<std::mutex> lk(m_mtx);
|
|
for (auto&& item : m_items.getContainer()) {
|
|
if (item.id) {
|
|
item.end = Clock::time_point();
|
|
item.id = 0;
|
|
}
|
|
}
|
|
auto ret = m_items.size();
|
|
|
|
lk.unlock();
|
|
m_checkWork.notify();
|
|
return ret;
|
|
}
|
|
|
|
void TimerQueue::run()
|
|
{
|
|
ThreadHelper::setName("TimerQueue");
|
|
while (!m_finish)
|
|
{
|
|
auto end = calcWaitTime();
|
|
if (end.first)
|
|
{
|
|
// Timers found, so wait until it expires (or something else
|
|
// changes)
|
|
int milliseconds = std::chrono::duration_cast<std::chrono::milliseconds>
|
|
(end.second - std::chrono::steady_clock::now()).count();
|
|
//std::cout << "Waiting m_checkWork for " << milliseconds * 1000 << "ms." << std::endl;
|
|
m_checkWork.waitFor(milliseconds);
|
|
} else {
|
|
// No timers exist, so wait forever until something changes
|
|
m_checkWork.wait();
|
|
}
|
|
|
|
// Check and execute as much work as possible, such as, all expired
|
|
// timers
|
|
checkWork();
|
|
}
|
|
|
|
// If we are shutting down, we should not have any items left,
|
|
// since the shutdown cancels all items
|
|
assert(m_items.size() == 0);
|
|
}
|
|
|
|
std::pair<bool, TimerQueue::Clock::time_point> TimerQueue::calcWaitTime()
|
|
{
|
|
std::lock_guard<std::mutex> lk(m_mtx);
|
|
while (m_items.size()) {
|
|
if (m_items.top().handler) {
|
|
// Item present, so return the new wait time
|
|
return std::make_pair(true, m_items.top().end);
|
|
} else {
|
|
// Discard empty handlers (they were cancelled)
|
|
m_items.pop();
|
|
}
|
|
}
|
|
|
|
// No items found, so return no wait time (causes the thread to wait
|
|
// indefinitely)
|
|
return std::make_pair(false, Clock::time_point());
|
|
}
|
|
|
|
void TimerQueue::checkWork() {
|
|
std::unique_lock<std::mutex> lk(m_mtx);
|
|
while (m_items.size() && m_items.top().end <= Clock::now()) {
|
|
WorkItem item(std::move(m_items.top()));
|
|
m_items.pop();
|
|
|
|
lk.unlock();
|
|
if (item.handler)
|
|
item.handler(item.id == 0);
|
|
lk.lock();
|
|
}
|
|
}
|
|
|
|
bool TimerQueue::WorkItem::operator > (const TimerQueue::WorkItem& other) const {
|
|
return end > other.end;
|
|
}
|
|
|
|
std::vector<TimerQueue::WorkItem>& TimerQueue::Queue::getContainer() {
|
|
return this->c;
|
|
}
|